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ABSTRACT 

Alternating optimization algorithms for canonical polyadic 
decomposition (with/without nonnegative constraints) often 
accompany update rules with low computational cost, but 
could face problems of swamps, bottlenecks, and slow con
vergence. All-at-once algorithms can deal with such prob
lems, but always demand significant temporary extra-storage, 
and high computational cost. In this paper, we propose an all
at-once algorithm with low complexity for sparse and nonneg
ative tensor factorization based on the damped Gauss-Newton 
iteration. Especially, for low-rank approximations, the pro
posed algorithm avoids building up Hessians and gradients, 
reduces the computational cost dramatically. Moreover, we 
proposed selection strategies for regularization parameters. 
The proposed algorithm has been verified to overwhelmingly 
outperform "state-of-the-art" NTF algorithms for difficult 
benchmarks, and for real-world application such as clustering 
of the ORL face database. 

Index Terms- canonical polyadic decomposition (CP), 
nonnegative tensor factorization, Gauss-Newton, Levenberg
Marquardt, face clustering, sparsity, low rank approximation 

1. INTRODUCTION 

Canonical polyadic decomposition (CP) with nonnegative 
constraints also coined nonnegative tensor factorization 
(NTF) has been found in many important applications [1, 2], 
and can be formulated as follows: "Factorize a given non
negative N -th order data tensor y E R� x h··· X IN into a set of 
N nonnegative factors A(n) = [a ;n) , a�n), ... , a1n)] E R�XR

, 
(n= 1,2, ... ,N)",that is, 

y � ! XI A(1) X2 A(2) ... XN A(N) = t, (1) 

where! is an identity tensor, "x n" denotes product of a ten
sor and a matrix along the mode-no In real-world applications 
such as EEG analysis [2], face clustering [3], and gene ex
pression clustering [4, 5], sparse solutions are often preferred 
to non-sparse. 
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Most NTF algorithms minimize the cost function 

via alternating optimization which often accompanies up
date rules with low computational cost, but faces problems 
of swamps, bottlenecks, and slow convergence. All-at-once 
algorithms which simultaneously update all the factors can 
deal with such problems. However, these algorithms always 
demand significant temporary extra-storage, and high com
putational cost of large-scale gradients, Hessians or Jacobian 
matrices. In this paper, we propose an all-at-once algorithm 
with low complexity for sparse and nonnegative CP based 
on the damped Gauss-Newton (dGN) iteration. A logarith
mic barrier penalty term and an l'1-norm penalty function 
have been imposed on the cost function (2) to enforce non
negativity and sparsity constraints. Especially, for low-rank 
approximation, the proposed algorithm avoids building up 
Hessians and gradients, reduces the computational cost dra
matically. Moreover, we propose method to adaptively select 
regularization parameters. The proposed algorithm is verified 
to overwhelmingly outperform "state-of-the-art" NTF algo
rithms for difficult benchmarks, and clustering of the ORL 
face database. 

2. DAMPED GAUSS-NEWTON ALGORITHM 

Paatero [6] proposed the PMF3 algorithm for NTF which 
minimizes the cost function (2) with a logarithmic penalty 
function to prevent factors A (n) reaching zeros. However, 
PMF faces problems of large-scale Hessian and Jacobian, 
and selection of regularization parameter. To this end, the 
proposed algorithm considers a similar cost function (2) with 
additional penalty terms PI and Ps to enforce nonnegativity 
and sparsity constraints on factors A (n) , respectively, 

N In R N 
PI = - .L: an .L: .L: log(a�n:), Ps = .L: fin IIA(nt ,(4) 

n=1 in=1 r=1 n=1 

where parameters an > 0 and fin > 0 for n = 1, 2, ... ,N. The 
update rule derived from the cost function (3) simultaneously 
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updates all the factors A (n) based on the damped GN iteration 
[6], and can be expressed in a common formula as 

(5) 

wherevT = [vec(A(n))Tf=l,Jl > Ois the damping parame
ter. The gradient g and the Hessian H are given by 

JT ( C', ) 
8PI 8Ps 

g= v -y +Tv+Tv 

-J'(� -y) - [ (a. vec( A(·) )[-'1 - ft. rr T,(6) 

2 2 n-I 
H -JTJ 

8 PI 8 Ps 
- +-+--

8v2 8v2 
= JT J + � diag {an vec(A(n)) "[-2] } , (7) 

J = [ PI (A0-1 ®I J ) ... PN (A0-N ®IN) ] ,  (8) 

where y = vec(X) , y = vecC�), EB denotes a direct sum: 
AEeB = diag{A,B}, and [x]"[P] denotes element-wise pow
ers, 8 denotes Khatri-Rao product and A 0-n = A (N) 8· .. 8 
A(n+l) 8 A(n-I) 8 ··· 8 A(1), Pn is a permutation matrix: 
vecC�) = Pn vec(V(n)) ,n = 1,2, . . .  , N. The Jacobian ma
trix J E R (TI In) X RT, T = 2:�= I In can be directly utilized in 
the learning rule (5). However, this demands high compu
tational cost for construction and inverse of the approximate 
Hessian (H + J1I) -I. In the sequence, we present more effi
cient computation methods for the learning rule (5). 

2.1. Fast computation of the gradient g 

From (8) and (2), we have the following result [7] 

( 8y ) T 
(y _ y) = vec(v( )A0-n _ A(n)r(n,n)) 

8A(n) n , 

where Yen) is the mode-n matricization of the tensor y, 
r(n,n) = ® A (m)T A (m) is Hadamard product of (N - 1) 

m*n 
matrices A (m)T A (m), m "* n. Therefore, by denoting F(n) = 
V (n)A 0-n - A (n)r(n,n), the gradient (6) can be expressed as 

(9) 

2.2. Construction and Inverse of Hessian H 

The Hessian 0 = H + J1I can be expressed as the concate
nation of R In X R 1m dimensional block matrices H(n,m) as 
H + J1I = [H(n,m)] . 

Theorem 1 (Expression of block matrix H(n,m). A diagonal 

block matrix H(n,n) can be expressed by 

H(n,n) = r(n,n) ® In + diag an vec A (n) + J1 , (10) { ( ).[-2] } 

and a block matrix H(n,m) for n "* m is given by 

H(n,m) = (IR ® A (n)) PR,R diag(vec(r(n,m)))(IR ® A (m)T), (11) 

where r(n,m) = ® A (k)T A (k), and PR,R is the commutation 

k*m,n 
matrix of an R x R matrix x: vec(X) = PR,R vec(XT). 

Proof Proof is directly derived from (8) and (7). D 

Theorem 2 (Low rank Adjustment for the Hessian 0). The 

Hessian 0 can be decomposed under the form as 

(12) 

where K = [K(n,m)] E RNR2XNR2 is a partitioned matrix n,m 
with sub-matrices K(n,m) given by 

K(n,m) = {PR,R diag (vec( r(n,m))) , 
0, 

m "* n, 

m =n, 

and matrices G E RTRxTR and Z E RTRxR2 are given by 

(13) 

G=P (�i� (r(n,n) +diag{ana��)·[-2] +J1})) pT,14) 

N 
Z = EB (IR ®A(n)) , (15) 

n=1 

N 
in which P = EBPR,ln' PR,ln is a commutation matrix of an 

n =1 
In X R dimensional matrix X: vec(X) = PR,l. vec(XT). 

Proof Proof is derived from Theorem 1. D 

Theorem 2 allows to inverse the large Hessian via the bi
nomial inverse theorem 

0-1 = G-I - G-I Z (K-I + ZT G-I Z)-I ZT G-I . (16) 

We note that G -I can be efficiently computed as 

G-I = P (�i� 8�n)) pT, (17) 

where 8�n) = (r(n,n) + diag {ana��)·[-2] + J1}) -I
. The in-

� �. 

verse of the partitioned matrix K has an explicit expression 
given in [7], and is rewritten in following theorem. 

Theorem 3 (Inverse of matrix K). Inverse of the kernel ma

trix K is a partitioned matrix X = K-I whose diagonal 

blocks x(n,n) ,for n = 1, . . .  , N are given by 

x(n,n) = � -=-� PR,R diag( vec( A (n)T A (n) 0 r(n,n))) , (18) 

and other blocks x(n,m) , \In "* m are given by 

x(n,m) = N � 
1 

PR,R diag( 1 0 vec(r(n,m))) (19) 
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Products of matrices in (16) can be computed as 

L = G-I ZT = P (�y(n)) (IN @ PR,R) , (20) 

N 
ZTG-IZ = (I @ PR,R) EB'P(n) (I @ PR,R) , (21) 

n=1 

where y(n)T = [at,)T @ et)Tl:=I
' and 'P(n) = ['P��)] is a 

This leads to solve a constrained LS problem 

'<In, (26) 

whereB(n) = [1 vec(-A (n))], andu(n) = vec( _A(n) ®F(n)). 
For NTF without the penalty term P s, conditions (23) lead 

to the result A (n) ® F(n) + an � 0, '<In. The parameters an can 
be chosen as 

. . 
d 

. 
f b 

. ...(n) "In ",,(n) (n) (n) partitlOne matrIx 0 su -matrIces T r,s = L..in=1 �in ain,r ain,s' an = max (0, min (vec( -A (n) ® F(n)) ) ) , '<In. (27) 
forr= 1,2, ... ,R and s = 1,2, ... ,R. 

From (9), (16), (17), (20), (21) and Theorem 3, the update 
rule (5) is formulated in a more efficient form as follows 

(22) 

where <I» = K-I + ZT G-I Z E RNR2xNR2. We note that for 
low rank approximation R « In, '<In, the matrix <I» is much 
smaller than the Hessian H E RRTxRT. Inverses of the ma
trix <I» requires computational complexity of order O(N3 R6), 
while (H + 11 I) -I has a computational complexity of order 
O(R3T3) or O(N3 R3 13) for a symmetric tensor h = . . .  = 
IN = I. As a consequence, solving an inverse problem'" = 
<1»-1 W, W = LT g in the update rule (22) is much less expen
sive than solving the problem (H + 111)-1 g in the update rule 
(5). Moreover, because the learning rule (22) does not need to 

construct the Hessian H and the Jacobian J, this update rule 
is significantly faster than the rule (5). 

3. SELECTION OF BARRIER AND SPARSE 
PARAMETERS 

Paatero [6] suggested an heuristic approach to control the bar
rier parameter a = al = a2 = . . .  = aN. The parameter 
a should be initialized by a large enough value, then slowly 
descends down to near-zero after each 10 iterations. This 
strategy is efficient in almost all cases. However, we can
not control the convergence speed. An alternative approach 
is to adaptively select regularization parameters based on the 
Karush-Kuhn-Tucker (KKT) condition. In this direction, Ro
jas and Steihaug updated barrier parameter at each iteration 
[ 8]. Ding et al. derived an optimal formula for regularization 
parameters in orthogonal NMF [9]. The sparsity parameters 

fin are often fixed to a small enough value. By employing 
this method, regularization parameters an and fin for '<In are 
selected based on the KKT slackness condition 

v�O, v®g=O, g�O. (23) 

From conditions (23), and the gradient (9), we obtain 

0, '<Inf24) 

� 0, '<In.(25) 

4. SIMULATIONS 

4.1. Synthetic data 

In the first simulation, the proposed algorithm (LM+) will 
be verified and compared with the multiplicative KL and LS 
[2], ALS, HALS [10], QALS [11] algorithms for benchmarks 
including bias, collinear factors. We constructed 3-D syn
thetic tensors y with h = h = h = 100 composed from 
random factors comprising R = 10 components. The com
ponents were forced to be collinear with others by a simple 

. . (n) (n) 0 5  (n) ( - 2 3 R) All modification ar = al + . ar , r - , , ... , . 
the algorithms were initialized using leading singular compo
nents, and stopped when difference of the consecutive relative 

errors s = II��RI� was lower than 10-10, or the maximum 

number of iterations (200) was exceeded. The SIR index 
II (

n
) .(

n
) II (S IR = -20 10g10 

a, ��' 2 dB) is calculated for the true 
Ila, 112 

and estimated components after permutation matching and 
normalization. Comparison of performances of various al
gorithms averaged over 100 runs is given in Table 1. The pro
posed algorithm achieved almost perfect performances with 
s � 2.87e-9 after only 67 (averaged) iterations. The other 
algorithms whose SIR indices are listed in the 4-th column 
of Table 1 could not estimate hidden components in 200 iter
ations. To analyze their convergences, we set new stopping 
criterion with one million iterations, and s � 10-10. Most 
algorithms except the KL algorithm converged to the desired 
results with averaged SIRs > 30 dB (given in the 5-th col
umn of Table 1). Fig. 1 illustrates relative errors as functions 
of iterations for NTF algorithms for one Me run. The Lm+ 
converged after 104 iterations, whereas the QALS stopped af
ter 50K iterations, respectively. To yields comparable perfor
mances to that of our algorithm, the other algorithms need 
much more iterations that ours. Moreover, in general the other 
algorithms often achieve a different solution because the op
timization problem is hard and the algorithms get stacked in 
a side local minimum more frequently than our algorithm. 

4.2. Clustering of the ORL face database 

This example considers the ORL face database consisting of 
400 faces for 40 subjects. In the first analysis, 100 faces from 
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Table 1. Performance comparison for various algorithms for 
Example 4. 1. 
Algorithm Error No. Hers SIR (dB) SIR* (dB) 
KL (1.56 ± 0. 39) 10 200 5±5 13 ± 3 
LS (1.02 ± 0.17) 10-4 200 14 ±2 33 ± 6 
ALS (7.83 ± 6.02) 10-6 200 19 ±4 63 ± 37 
HALS (10.6 ± 0.83) 10-6 200 13 ± 3 57 ± 5 
QALS (15.0 ± 7.26) 10-7 200 20 ± 2 140 ±73 
LM+ (2.87 ± 20.2) 10-9 67 97 ± 16 150 ±23 
*: algorithms were run till the error s < 10-10 in 1M iterations. 

Table 2. Accuracies (Acc) and normalized mutual informa-
tion (NMI) for various algorithms for Example 4.2. 
Algo- 10 classes 30 classes 40 classes 
rithm Error Acc (%) NMI Acc (%) NMI Acc(%) NMI 
KL 4.5Ie-2 80.00 8.64e-l 92.67 9.4ge-l 82.25 9.08e-l 
LS 1.27e-2 88.00 9.06e-l 96.33 9.75e-l 85.75 9.42e-1 
ALS 6.7ge-2 93.00 9.20e-l 95. 33 9.7Ie-l 85.50 9.30e-1 
HALS 1.17e-2 91.00 9.IOe-1 97.00 9.76e-1 86.25 9.47e-l 
QALS 1.18e-2 92.00 9.2Ie-1 98.33 9.84e-1 88.00 9.50e-1 
LM+ 1.17e-2 94.00 9.44e-1 99.00 9.90e-1 87.25 9.44e-l 
LM+s 1.24e-2 100 1.00 99.67 9.97e-l 92.75 9.6ge-l 

the first 1 0 subjects were down-sampled, then vectorized to 
give a (400 x 100) matrix Y. We applied NMF to findR = 20 
features for each face, and used the K-means algorithm to 
cluster them. The accuracy (%) and normalized mutual in
formation (NMI) for algorithms are given in Table 2. The 
proposed algorithm explained data with a lowest relative error 
and achieved a higher clustering accuracy than the other algo
rithms. Especially, the LM+ with sparsity constraints (LM+s) 
successfully clustered the selected faces. 

Next, we constructed 32 Gabor feature tensors of 8 ori
entations at 4 scales which were then down-sampled to 16 x 
16 x 32 x 400 dimensional tensor Y. Because of low cor
relation or rare common parts between Gabor features which 
are not in the same levels (orientations and scales), we found 
common bases A(n,) E RJ6xR" n = 1,2 for 3-D sub-tensors 
.L = Y(:,:, I,:) E RJ6x J6x400 (l = 1,2, ... ,32) along the two 

first dimensions: YI � II Xl A(l,) X2 A(2,) x3 A(3,). In this 
experiment, we set RI = 8, VI. Hence, a sample had 256 (= 

8 x 32) features compressed from 8192 (= 16 x 16 x 32) 
Gabor features. In the second stage, the matrix of features 
X E R400x256 was factorized to reduce the number of features 
to the number of classes. Finally, the data was clustered using 
the K-means algorithm. In Table 2, we compare clustering 
performances for various algorithms. For clustering of faces 
for the first 30 subjects, the LM+ achieved 99% accuracy, 
outperformed the other algorithms. The LM+ with sparsity 
constraints (LM+s) slightly improved performance up to an 
accuracy of 99.67%. Increasing the number of classes to 35 or 
40 subjects, the LM+s always gave the highest performances. 

S. CONCLUSIONS 

A robust and low complexity dGN algorithm has been pro
posed for NTF. Instead of solving large-scale inverse prob
lems of size RT x RT with O(R3T3) or O(N3 R3 13) for sym-
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Fig. 1. Convergence of NTF algorithms for Example 4.1. 

metric tensors, the proposed algorithm considers problems of 
much smaller matrices of size NR2 x NR2, with a dramati
cally reduced computational cost of O(N3 R6) for R « I. Se
lection strategies of regularization parameters have also been 
proposed. Especially, the proposed algorithm with sparsity 
constraints improved the clustering performance for the ORL 
face database. 
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